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GOODNESS OF FIT TESTS

WITH SPECTIAL REFERENCE TO TESTS FOR EXPONENTIALITY

1. In recent years there have been big advances in goodness-of-fit

testing; famous tests like X2 and those based on the empirical distribution
function or on spacings have been improved or extended, particularly

to deal with nuisance parameters; new tests have been proposed for special
situations like testing for normality and exponentiality; modern computer
‘techniques have enablad new examinations of older statistics like blﬂnd b,
measuring skewness and kurtosis.

We wish to give a guide to some of these advances, following some

principies which we hope are based on practical considerations.

2. The problem is as follows: a random sample of 'n values of x is

¢iven, and we wish to test the null hypothesis, that the distribution

function of x , G(x) , is a given distribution
HO: G(x) = F(x;8)
where €@ is a vector of parameters which may be partly or wholly unknown.

3. Historically, the classical test is Pearson's X2 , usually callzd
chi-square; although of long history, much work is still being done on

this statistic. It is a natural statistic for discrete distributions,

hut when F(x;8) 1is continuous, onc loses information by groubing; however,
the test is easily adapted for use when 6 is unknown, or part of & 1is

unknown. The adaptation implies a method of estimating parameters which



is often not followed in practice, and also uscs asymptotic results for
finite samples, and errors are introduced in this way; nevertheless, the

statistic is well established in the user's lexicon,

2 . . e s
4. There are two other assets for X which can be turned into principles

for practical use.

Principle 1. The user likes to keep close to the original data; he does
not want, if it is avoidable, to make an elaborate transformation of his
x-values to, say,new z-values, which are then used in calculating a test

statistic, but which as a data set mean little to him.

Principle 2. When a test statistic is significant, the user will want to
interpret this in terms of some irregularity in the original data, which

is suggested by the form of the test statistic.

In the Xz test, one sees the original data on a line, and only
grouping is involved; thus Principle 1 is obscrved. With reference to
Principle 2, a high value of the statistic can usually be seen to come from

onc or two cells and the irregularity in the data is at once pinpointed,

5. Over the years, other methods of testing have been introduced. An
important problem is always how to handle nuisance parameters. We shall
discuss only tests for continuous distributions, for which chi-square is not
so naturally suited, and will begin with two general types of test: EDF

statistics and regrsssion tests.

(. EDF statistics are the oldest historically; the firet was the
Kolmogoroy {-Smirnnv) statistic. EDF refers to the empirical distribution

function F“(x)



_ number of x-values = x
F (x) = - ,

and EDF stutistics are based on a measure of the discrepancy between

Fn(x) and F(x;9) . These are both graphed; and, loosely speaking, D,
the Kolmogorov-Smirnov statistic, is the largest vertical gap between the
curves. More precisely, let F(x) refer to F(x;8) with © known, or

with estimates of 8 inserted wherc necessary. Then
D" = sup {F (x) - F(x)}, D7 = sup {F(x) - F_(x)}
x n X n

and. D= (7,07).
A related statistic is (Kuiper's) V = D"+ D"

Other statistics measure the discrepancy in other ways; three of the
nost important are the Cramér-von Mises Wz , Watson U2 , and Anderson-

5
Darling A

W’ = n f ¥ () - F(x) ¥ ar(x) ,

u? = n f” b () - Jw (F () - F()) dF} 2 dFx)
2 _ 2
AT =n Jm w(x) {Fn(x) - F(x)}" dF(x) ,

-C0

with

1
V) = R - T

Tn order to fix our ideas, and because we wish to concentrate later
on this test, let us supposc that the hypothesis to test is that n  values

of x constitute a random sawmple from the cxponential distribution:

F(x:0) = 1 - exp(-B(x-a)) , x>0 ;

(r,2) zmd onz or hoth may be unknown. When 0 is known, asymptotic and

R G =
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much finite-n null distribuetion theory is known for the above statistics, and
they have slowly come into use. Undoubtedly, wider use was held up because

in the important situations where 0 was pot known, the distribution theory
was lacking. In very recent years this has been somewhat filled in, and EDF
statistics can now be used for tests for the following important distributions:

(a) the normal, with p and/or 02 unknown,

(b) the exponential distribution, B unknown, o known.

It is of course easy to test for the exponential distribution when o is
also not known; the smallest number of the sample is subtracted in turn from
all the others and the resulting set is tested for exponentiality with B8
unknown and © equal to zero. The above tests are in the literature, and are
described in Stephens (1974b). Also, significance points have recently been
provided for tests for:

(¢) the Gamma distribution, scale parameter unknown (Pettitt and

Stephens, 1976},

(d) the extreme value distribution, scale and/or location parameters

unknown (Stephens, 1976b).

In summary of the theoretical side, asymptotic distributions of EDF
statistics do not depend on 6 if this involves location and scale parameters.
Asymptotic points have been calculated for W2 ’ U2 and A2 (Stephens, 1976a;
burbin, Knott and Taylor, 1975), and recently progress has been made for finite
n , for the test for exponentiality, by Durbin (1975) and Margolin and Maurer
(1976) . But in general, points for all statistics, for finite n, have been found
by Monte Carlo nethods. These must be extrapolated to give asymptotic points for

JiD and YAV . For all the statistics Stephens (1974b; also given in Table 54

of Pearson and Hartley, 1972) has provided correction factors which enable the

statistics to be used with only thc asymptotic points. Muny other rcferences




to work in this area are in Stephens (1974b, 1976a); for an overall sunmary

of the EDF and its properties see burbin (1973).

Advantages of EDF statistics arve:

(a) they follow Principles 1 and 2;

(b) they are easily computed (one formula for all n );

(c) over a wide range of alternatives they are more powerful than

2 2
X (probably because of grouping in X );
(d) they provide consistent tests; if x in fact comes from G(x)

which is not F(x;8) , then as n +» o , Fn(x) + G(xX) , and the test statistics

will be declared significant.

Points (c) and (d) can be included as two new principles:

Principle 3. A test should be consistent and unbiased.
Principle 4. A test should be powerful over a wide range of alternatives.

Clcarly we cannot find 2 test which is, in general, most powerful (or evcn
powerful) over all alternatives to F(x;0) ; and since the alternative
is often not very precisely known, we establish Principle 4, to cover a

wide range of possibilities. It may be modified somewhat to demand good power

over only certain classes of alternatives; e.g., in a test for exponentiality,

one nay want power only against heavy-tailed distributions.

7. Rcgression tests. These are especially suitable for situations where
unknown parameters are location and scale parameters, and have been developed
for tests for normality and exponentiality, particularly by Shapiro and

Wilk (1965, 1972). The test is based on a regression of the order statistics of v;
the saimple against the expected values of order statistics from some canonical

version of the distribution tested. Thus suppose mo for 1 from 1 to

n , are the cxpected values of order statistics from N(0,1)

; and let the




X . 2 2
test bo that an  x-set comes from N(M, ¢7) , ¥ and o unknown. ‘Then
supposc we oerder  x; T X, T crc S X We have
1 ' 2(x.) = U + Om,
(1) F(tl) M m.

and a regression of X; on m, should be a straight line.
The x; are correlated because they have been ordered; but using
generalized least squares, an estimate of O can be found as the estimated

slope of the line. This is

say, where m is the vector of mos X the vector of X5 and V the

covariance matrix of normal order statistics. The test statistic W

~

depends essentially on a comparison of o? with s2 , the usual sample
variance. ;From the thcoretical point of view, many pfoblems are posed by
¥ , both with distribution theory, even asymptotic, and by the fact that

V is not known for high n ; nevertheless, in practice, Shapiro and Wilk
gave approximate values of a above, for n =50 . For n > 50,

Shapiro and Francia (1972) replace Q'y“I by m' ; for both statistics,
null distribution points are given by Monte Carlo methods. A disadvantage
in the test for normality is that it needs a different a for cach n .

De Wet and Venter (1973) have investigated the statistics arising when we
regress X on h where hi » the i-th component of h , is the inverse of
the standard normal distribution evaluated at i/ (n+1) thig is "'close to"
My but not ecquul to it. For theoretical purposes h is casicr to work

~

with, and for example, de Wet and Venter have found the asymptotic distribution



of the statistic corresponding to W . LaBrecque (1972) has extended the

modal (1),to

E(xi) = |+ om, + Bzwz(mi) + BSWS(mi) -

where wz(mi) is a quadratic and ws(mi) a cubic in m, o, and ‘used

regression estimates of 32 and 33 to gives tests. Power is increased
again for most alternatives, bﬁt the price is extensive computa;ion; also
onec begins to get furthar from étraightforwatd interpretation of the test

statistics. Stephens (1975) also has investigated this model.

8. Advantages and disadvantages of W. The W type of statistic ccrtainly

satisfies Principles 1 and 2; the regression picture is informative. For

the normal test, it has high power (not so overwhelmingly better than EDF
statistics as at first asserted, sce Stephens (1974b), but nevertheless on the
whole marginally better than Wz or A2., and these.in turn are much better than
D or xz ). On the other hand, W is more difficult to compute, and

another disadvantage is the lack of mathematical theory referred to above.

Of course, this may be rectified in due course. Connccted with this is a

greater difficulty: the W technique wmay not be consistent. The corresponding

test for-the cxponential distribution above is based on a test statistic

n(x - x )2
W. = 1

E

(n - DT %2 - nx?)
i 1

and Shapiro and Wilk have presented this test and given Monte Carlo percentage
points. Serkadi (1975) has recently cast doubt on the consistency of the
Shapiro-Wilk tests for rormality and exponentiality, though he auffirms the

consistency of the Shapiro-Francia (1972) test. Sarkadi gives a version of
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g which he states is consistent, but no percentage points. It would scem
that more work is still nceded on the consistency of these procedures, and

indced of other statistics.

9. Before turning to tests for exponentiality in more detail, we point
out other important lines of recent research.

(a) In connection with eliminating nuisance parameters before a test
can be applied, O'Reilly and Quesenberry (1973) have a method, the conditional
probability integral transformation, which is elegant and of considerable
rmathematical interest; however, quite extensive computapjons are neaded.

(b) Watson, and later Durbin and ¢o-workers, and Stephens, have
developed yn(x) = v/n (Fn(x) - F(x;9)) as a Fourier series; Wz is a
functional of yn(x) and its properties can be written in terms of the
Fourier coefficients. Similar work was done also on U2 and A2 by these
authors. (Durbin and Knott, 1972; Durbin, Knott, and Taylor 1975;

Stcphens, 1974a).

Asymptotic distributions, and alsq asymptotic power, can be found for
certain alternatives (tending, of course, to the null as n - « ). Durbin
and his cc-workers also propose use of the low-order Fourier coefficients
(which they call components) as test statistics, and show these to be more
powerful, in certain circumstances, than the entire statistics (e.g., in a
test of 1M(0,1) when the alternative is N(Y/vn, 1) , Y a positive constant).
tHowever, in Stephens (1974a) it is shown that these circumstances arce
restricted, so much so that it is difficult to recommend components. For example,
in a test for N(0,1) against N(YI//E, 1+ Yzlvqh, a component sensitive to
the value of Yl might bc totally unaffected by Y., . Trom a practical point

of view, cxpecially when parameters must be estimated, they violate Principle 1.



For example, consider the test for exponentiality, o = 0 , f£. unknown; onc
first must calculate, from xi , the valuce

~

X; = 1 - exp(-xi/x) ;
then, for j = 1,2;...,10 , the valucs
_n ~
y; = Y2/a I cos(Tj xi) R

i=1

finally, the k~th component is given by

s

0
z, = L b..vy.,
k 5=1 ki “7j
where bkj are found by methods of Durbin, Knott and Taylor (1975). (It

may be that the by given in the Durbin, Knott and Taylor paper are in error

J
(Stephens, 1976¢)).
Not only are these techniques (also that of de Wet and Venter (1973))
mathematically interesting; they also give impetus'to questions concerning
the pnrpogé, efficiency, and utility of goodness-of-fit tests, and how to

start measuring these concepts.

(¢) On very practical lines, recent work by D'Agostino and Pearson
(1973) and by Bowman and Shenton (1975) has ercouraged the use, in tests
for normality, of the skewness statistics b1 and the kurtosis statistics b2 .
These are well established statistics; the first authors gave new tables of
significance points, and sﬁggested how they might be combined in an omnibus
test statistic; however, they assumed independence of b1 and b2 , and
this is not justificd. Another approach to using both /E; and b, is to
mark them as a point in a 2-dimensional graph; if the point falls outside
given contours on thc graph, normality will be rejected. This is the

approach of Bownman and Shenton (1975); it provides a technique for using

two statistics simultarcously to assess “0 , although one can regard the




contour as a function of b1 and b2 vhich is in effect a third statistic
by which HO is judged. The above methods appeal to Principle l; the
practical man has a “fcel" for bl and b2 and, possibly, for the implications

if the values lead to rejecting HO

10. Tests for the exponential distribution. We now return to the exponential

test, to the special case where o is known. This may be taken as zero; it

is convenient to replace 8 by 6 so that H, is that the sample is from
(2) F(x;9) =1 - exp(-6x) , x>0,

where'the scale parameter © is unknown.

A multitude of test statistics have been posed for this important problem;
not only does the distribution arise in many statistical problems, but it
also appears prominently in the theory of renewal processes, in particular,
the Poisson process. 1If events are random in time, we expect the intervals
between them to be exponential. Important questions arc then whether this
is so, against a more general Gamma alternative, say, or whether they are
exponential, but 8 is changing. Some test statistics have been devised
with these applications in mind.

We have already mentioned (a) EDF statistics and (b) Shapiro-Wilk WE
as availablie tests. Most other tests exploit some interesting connections
between the exponential dist;ibution and the uniform. Thesc are briefly
described as follows.

(a) Suppose Xl,Xz,...,Xn [not in order] is an exponential sample
from F(x;9) ; let X(i) be the ordered sample.

{hb) Sunposc UI’UZ""’Un is a vandom (i.c., unordercd) sample {rom

ueo,1) , anl let U(i) be the ordered sample; let Di be the spacings

10



between the U(i) ; i.e., D = |

= ) -1 [ ‘ = - ’
1 =%y 27 '@y o P Yy Ve
‘ Dn+1 = ?“U(n) . Note that the spacings will not be ordered; let -D(i)

denote the ordered spacings.

{¢c) The G transformation: uniforms to uniforms .

(VLY

{
0} 1

o . o |
A _ TR . ’ {

/”cl) Yyl ”(3)\ Uem T
D, Dy D

n+l

D1 D2

The picture is obvious. Let D = 0 . Let

(0)

D;; = (n + 1 - j)(D(J) - D(j_l)) » j = l:-'-:n"'l

Then D% is another set of unordcred uniform spacings (Sukhatme, 1937).

One can clearly build up another ordercd uniform sample,

I
= y D,

U,
Gy 43,1

We shall write U' = GU for this transformation. Durbin (1961) showed
that, loosely speaking, G makes large spacings larger and small spacings

smaller. It makes a '"nearly uniform" sample appear further removed from uniform,

though it cannot be repeated indefinitely; after a certain point, an cxtremely

non-uniform sample, i.e. very uneven spacings, is transformed to appear more

uniform than before.

(1) The J transformation: exponentials to uniforms. Put the

successive (unordered, exponential) Xi along a line in sequence. Let

-

the total L Xi = Z . Divide by Z to get

j
U,.i= £ X./Z, j=1,...,n-1

o

Then (well known): U(j) arc ordered uniforms: note there arc only n -1

of them. We write U = J§ .

~

11



x X 3 Ca) s f.(\
R R X4 “ X 2
" After 4 ]
divisicn 0 %~A 2 /s* ; f' ? j 1
by 2 u v A ] ]
’ 02 Y5y (4) (n-1)

In the case of renewal processes, the quantities ZU(j) shown with a
cross, will be times of events (j-th blip on a screen, j-th battery failure
‘(batteries being inserted as soén as one fails)). One can adapt the above
to the situation where one obserﬁes for fixed time T1 , and obtains n

obscrvations (used batteries) in T, , and time left over. Divide by ’I‘1

1

and the U(j) are n uniforms.

(e) The K transformation: ecxponentials to uniforms.

(1) Start with X (exponentials); find E = J§ . Note:
U are ordered uniforms; but their sizes depend on the
original random ordering of the Xi .

(2) Apply G to get U' = GU . U' are ordered uniforms; the
combined U = GJX gives the same set of U' no matter
what the original X-ordering. A formula can be found to
give U; dircctly from the Xi ; ve write U' = KX (= GJX)
(Seshadri, Csorgo and Stephens, 1969).

(f) The N transformation: exponentials to exponentials. We can

) ]
complete the circle by returning the, Ui to exponentials Xi , and these

can be fousnd directly from the )(.1 . Let X(O) =1 3

]

Xi = (n+ 1 - i)(X(i) - X(i-l)) R i=1,...,n.

We write X' o= NX 3 the X' arc exponential, pararneter 0 , i.c. from

distribution (2).

12



11. Eﬁﬂ?ﬁﬁﬂ?iﬁl tests, Note that the transformations J and ¥ reducce

~an exponential sample to ordered uniforms; in so doing they eliminate the

unknown parameter 8 . Conversely, properties of the uniform distribution
can thus be used to give estimates of 0O , including estimates from only
the first r values of X, i.e. a censored sample. The maximum likclihood
estimate from a complete sample, used in EDF tests, is /X .

Once the exponentials have been changed to uniforms, tests for
uniformity can be directly applied. Sometimes this is the way the tests
are proposed; at other times the tests are given in terms of the original
cxponentials. These connections are pointed out in order to try to see

the relations between many of the proposed statistics.

12. Proposed tests for exponentiality.

The following are some proposed techniques for testing for exponentiality,

roughly graded into groups.

Group A - Direct use of the EDF,

(1) FEDF statistics: direct estimation of © and use of D, V, Wz,

2 2
U or A7, say. 1-tail test

-~

(2) Srinivasan D : closely related to D above and asymptotically

equivalent to it (Moore, 1973); uses Rao-Blackwell theorem for better

estimate of F(x;0) . 1-tail test

(3) Finkeclstein and Schafer, S* : an EDF test, similar to wz in {1);

S* = I, éi vhere Gi = max[[F(x(i);é) - (i'l)/“[»lF(X(i);a) - i/mf] .

2
i

Monte Carlo points arc given for S* . 1-tail test



(4) Modified Shapiro-Wilk (Stephens, 1977)
¥

(z x)?

W* =

2 2
n{n+l) ¥ x] - (z xi) }

distributed like WE for n + 1 observations. Z-tail test
(The test for origin "known', as given by Shapiro and Wilk (1972) is
strictly a composite test, for both exponential shape and a hypothesized
origin; W* is the version comparable to other tests being considered
here. For the alternatives below, it is generally better than the WE
"test given by Shapiro and Wilk (Stephens, 1977)).

Group C - Tests based on transformations to uniformity,

Transformations J and X below refer to those described in Section 11,

If we decide to produce uniforms b} J or K, we can then follow
up wi£h appropriate tests for uniformity, e.g.
(i) EDF tests, or
(ii) tests based on spaéings;much impetus to this established
line of work was given by Pyke (1965);
(iii) tests based on the position of the mean of the U or U
(produced by J or K respectively) or of one order statistic
U(r) or Uir) ;for a chosen 7t ;
(iv) the Shapiro-Wilk regression test, This is now based on the range

over the standard deviation of the U (or U') sample.
Some tests using these techniques are:
(5) J : followed by EDF statistics in (1) above for testing for uniformity.

i
1

1k



Lewis (1965) shows the procedure to lead to inconsistent tests; this
was verified also in Scshadri, Csorgo and Stephens (1969).
(6) X : followed by EDF statistics for testing uniformity, i.c.
. ' 2 2 2 .
K, then D, V, W , U or A 1 tail test

These were considered by Seshadri, Csorgo and Stephens (1969), and

are generally better than (6).

(7) K : followed by U' , i.e. the mean of U' . Suggested by Lewis

(1965): Lewis' S' is

' =0"'=2n-2%1iX,.\2
° noA R fay

where Z = XXi . This can be regarded as a test derived from regression of

X,.y on 1i.. ' 2 tail test
(i) R

(8) K : followed by Utr) for suitable r . First suggested by Lewis

(1965), and later by Tiku, Rai and Mead (1974); the latter

reconmended T ~n/2 . 2 tail test
Group D
n —
Other tests. Let Z = X Xi » X = Z/n (the Xi are the original exponentials
i=1
i -1
from (2)). Let m. be E(X(i]] when 6 = 1; m, is then ¥ (n -3 + 1) .
=1
{(9) Jackson (1967):
n
z X,.
jop 3 @)
T = — . 2-tail test

This cen be regarded as derived from a regression of X(i) on m. .

(10) Morva- (1947, 1951):

i e+ eeearo—~



(11)

(12)

equivalont to

cquivalent to

On M, , M is distributed Xs . 2-tail test

M is related to Bartlett's test for equal variances. Moran's test
i's asymptotically most powerful against the general T-distribution

alternative (Shorack, 1972):

£(x) = 62 x21 exp(-ex%/%(a) , X>0,a>0.

It is a strong test against the Weibull alternative

£x) = 0(0x)% exp(-(0x)%/a) , x>0,2>0

(Bartholomew, 1957).

n ‘
Bartholomew (1957): S = IE (Xi/Z)2 equivalent to S
i=1

"
W~
o

i
l-tail test

The second form of S was discussed by Moran (1947).

Cail and Gastwirth (1976): this is a recently proposed test based on
r
L) = I X ./z
n i=1 (1)

where 1 = [np] . They suggest p = 0.5 .

(12 Trenzformation N [expenentials to exponentials), followed by Moran's

16
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Considered by Epstein (1960); Fercho and Ringer (1972) gave power
against Weibull alternatives, in the context of arrival times, and

failure rates.

13. Pover studies. We have examincd the power of most of these statistics

by Monte Carlo methods. Some results, for n = 10 and 20., and for-10%
tests, are given in Tables 1 and 2.

Notes:

(2) Powers are given in percent; numbers in parenthesés indicate the
numbef (in 1000's) of M.C. samples used for the experiment.

(b) Authors usually recormend whether the.tcst is one-tail or two-
tail; this advice was followed, and no two-tail test was adapted to one-tail
in order to improve the power for a specific alternative. Thus the test
is performad as though the alternative were unknown; naturally one ﬁight
adapt the test to one-tail against known alternatives. This might be
particularly important where the test is for inter-arrival times or failure
rates, and the alternative is a speeding-up of observations; or a lower
(higher) failure rate.

(c) Mostly our results match those given by other authors, the exception

being where those authors did adapt the tests as in (b) above.

14. Conclusions.

(a) Thz following all give good results:
(1) EDF using estimation of © , and the Az , w2 or
Finkelstein-Schafer statistic,

(2) Lewis, Jackson, Shapiro-Wilk,

17



(3) Moran,

. . 2 2
(#) K-transfora, using A", W™ .

(b) Groups (1) and (2) in (a) follow Principle 1 quite closely: the
EDF picture is informative, the Lewis and Jackson statistics arc dependent
on the sloves of a plot of X(i) against i and m. rcspectivély
(ignoring covariances); the Shapiro-Wilk test uses a regression on m o,
including covariance. Moran's statistic is perhaps less pictorial, but if the
xi are put sequentially along a line (not ordered), the spacings should be
like uniform spacings and Moran tests this. It has the merit of known best
power against some important alternatives. The K transform is less direct:
though if the mean of ths ordered uniforms so generated is then used as test
statistic, it leads directly to Lewis' statistic.

(c) If our results for Moran are compared with those of Fcrcho and
Ringer (1972) for the N transformation followed by Moran's statistic (there
called Epséein), it seems that the dircct use of Moran's statistic is préfcrable
for the ﬁeibull alternative considered (i.e., it is not helpful to use the N
transformation).

(d) The Kolmogorov-Smirnov statistic is not good cither with EDF directly
or after the transformation K ; similarly for the closely connected Srinivan's D

(c) Tt is still necessaty to pursue research on consistency. Two main
problems are involved: (1) are given tests, say for uniformity when a transfor-
mation like K has been made, themselves consistent against departures (or at
lecast a wide class) from uniformity? (2) do several parent populations all give
uniformity under onc of these transformations?

(f) The test considered here has been the test that a sample is from

an cxponential parcent population. When the problem concerns arrival times

or other prohleis wirere the exponentials avrive scquentially, there will

18



be speciul alternatives which will promote onc test over another. [t would
A
appear that further work is needed on the efficiency of tests for this

particular problem.
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The distributions referred to in the table include:

Beta (a, b)

Uniform

Lognormal 6

Weibull ©

Half-normal

Half-Cauchy

f(x) = const. xa"l(l—x)b_1 3 0 < x
f(x) =1 3 0 <x
. 2 9 ,
£(x) = const. exp {-(In x)“/20°} ; x>0
f(x) = const. x8-1 exp(—xe) H x>0
y is N(0,1) , x is |y| H : x>0

y is Cauchy, median zero;x is |y]; x>0

Test statistics are abbreviated as follows:

S

F-S
S-W-S
S-C-S

T-R-M

M

Srinivasan

Finkelstein-Schafer

Shapiro-Wilk, modified by Stcphens
Seshadri-Csorgo-Stephens

Lewis

Tiku~Rai-Mead

Jackson

Moran
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